Construir un triangulo a partir de un angulo y un punto del otro lado

Ejercicios sobre polígonos y proporcionalidad.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
Alez00
USUARIO
USUARIO
Mensajes: 7
Registrado: Mié, 08 Abr 2009, 23:43

Construir un triangulo a partir de un angulo y un punto del otro lado

Mensaje: #5265 Alez00
Mié, 08 Abr 2009, 23:59

Enunciado:

Construir el triangulo ABC, si se sabe que AC pasa por P, y los segmentos determinados por P, son tales que su multiplicación es igual al área del cuadrado PQRS.

Lo únicos datos que te da es ese angulo B, y que la recta que pasa por P y que determina dos segmentos que cuya multiplicación nos da el área del cuadrado mostrado.

Imagen

Es cierto, debo de pedir disculpas, por haber copiado mal el enunciado.
Última edición por Alez00 el Sab, 11 Abr 2009, 17:05, editado 1 vez en total.

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4034
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #5267 Antonio Castilla
Jue, 09 Abr 2009, 09:24

.
Construir el triángulo ABC, si se sabe que AC pasa por P, y los segmentos determinados por P, son tales que su multiplicación es igual al área del cuadrado PQRS.

Imagen
Para averiguar la posición de C :

1 - Unir B con P

2 - Por P trazar una perpendicular a BP, y sobre ella llevar el lado del cuadrado. A su extremo lo llamaré X

3 - Unir X con B

4 - Determinar la mediatriz de XB

5 - Donde corte a BP se toma como centro de una circunferencia de radio hasta B o X

6 - Prolongar BP hasta cortar a la circunferencia. El punto de corte con la circunferencia es el vértice C buscado

Para localizar el vértice A se necesita algo más.

Alez00
USUARIO
USUARIO
Mensajes: 7
Registrado: Mié, 08 Abr 2009, 23:43

Mensaje: #5279 Alez00
Vie, 10 Abr 2009, 22:56

Muchísimas greaicas por tu ayuda.El dibujo debe de terminar algo así.

Imagen

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4034
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #5280 Antonio Castilla
Sab, 11 Abr 2009, 08:27

.
En tu enunciado decias "si se sabe que BC pasa por P", y en tu dibujo es AC quien pasa por P, acláralo pues son dos problemas distintos.

Alez00
USUARIO
USUARIO
Mensajes: 7
Registrado: Mié, 08 Abr 2009, 23:43

Mensaje: #5286 Alez00
Sab, 11 Abr 2009, 17:06

Ya lo arreglé, mil disculpas.

rojoarq
USUARIO
USUARIO
Mensajes: 0
Registrado: Sab, 23 May 2009, 18:57

Mensaje: #20126 rojoarq
Dom, 06 May 2012, 21:43

ENTONCES EL PLANTEAMIENTO DESCRITO NO CORRESPONDE CON EL ENUNCIADO?

CUAL SERIA LA SOLUCION PARA AC PASANDO POR P?

GRACIAS

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20734 luisfe
Sab, 28 Jul 2012, 00:03

Hola. Han pasado como tres años y medio desde que se planteó éste problema. Lo he visto y la verdad es que me ha inquietado un poco.
Bueno, aporto aquí una solución para el interés de todos los curiosos.
Había que encontrar el lugar geométrico en el que fuera constante el producto PA * PC y encontrar el punto de corte con las rectas que forman el ángulo dado.
En éste caso habría 2 soluciones; la circunferencia o dicho lugar geométrico corta en dos puntos a "s". Sólo muestro una de ellas.
También decir que se podría complicar el ejercicio si elegimos una o dos circunferencias como contenedoras de los vértices que faltan en lugar de el ángulo,
pero me voy ha centrar en éste problema.
La secuencia sería la siguiente:
Adjunto dibujito.
Hacemos pasar por P una recta cualquiera que corte a "r" (un lado del ángulo) obteniendo el punto A'.
He elegido que sea perpendicular a dicho lado para ahorrar alguna línea.
Desde P levantamos perpendicularmente a ésta, un segmento con la medida del lado de PQRS cuyo extremo será el punto D.
Unir D con A' y perpendicularmente a ésta trazamos desde D una recta que cortará a la continuación de PA' en C'.
Trazo una circunferencia O de diámetro PC'.
Donde corte O con "s" obtenemos el vértice C.
Desde C llevamos una recta que pase por P y corte a "r" en A.

Aunque la resolución no varía en absoluto, también se puede plantear el problema como una INVERSIÓN con centro en P, en la que hay que hallar la figura inversa de uno de los lados del ángulo y que será la circunferencia que corte al otro lado en los puntos buscados . El valor de potencia sería el cuadrado dado.
Adjuntos
triángulo hallar lado b que pasa por P y el producto PA x PC igual área PQRS.png
Última edición por luisfe el Mar, 02 Abr 2013, 15:19, editado 1 vez en total.

círculo
USUARIO
USUARIO
Mensajes: 0
Registrado: Mié, 01 Ago 2012, 21:40

hallar triángulo con punto, recta y circulo

Mensaje: #20762 círculo
Mié, 01 Ago 2012, 21:55

Gracias luisfe.
¿Y cómo sería en el caso de que nos dieran una círcunferencia y una recta entonces?

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20766 luisfe
Jue, 02 Ago 2012, 06:42

círculo escribió:Gracias luisfe.
¿Y cómo sería en el caso de que nos dieran una círcunferencia y una recta entonces?

Ok. Luego por la tarde te subo un dibujito.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20771 luisfe
Jue, 02 Ago 2012, 15:06

círculo escribió:Gracias luisfe.
¿Y cómo sería en el caso de que nos dieran una círcunferencia y una recta entonces?

Hola.
Te adjunto 2 dibujitos para el caso que preguntas y para el caso de que nos den 2 circunferencias soporte de los vértices A y C.
En realidad es casi el mismo ejercicio en ambos casos como podrás observar.
Sólo muestro una sólución en estos casos, para no emborronar mucho el ejercicio.
Ciao.
Adjuntos
Triángulo dado vértice punto lado opuesto y 2 circunf soporte vérts y cumpli PAxPC = área cuadrado dado.png
triángulo un punto P del lado b  y circ soporte de A y C y el producto PA x PC igual área PQRS.png


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “POLÍGONOS y PROPORCIONALIDAD”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados