triángulo conociendo las rectas soporte de dos mediatrices y de la mediana

Ejercicios sobre polígonos y proporcionalidad.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
cristinasanchez
USUARIO
USUARIO
Mensajes: 0
Registrado: Mié, 27 Ene 2010, 14:36

triángulo conociendo las rectas soporte de dos mediatrices y de la mediana

Mensaje: #8817 cristinasanchez
Mié, 27 Ene 2010, 22:15

dibujar un triángulo conociendo las rectas soporte de la mediatriz de AB(recta r), de la mediatriz de AC(recta s) y de la mediana correspondiente al vértice A(recta t).
gracias

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
julia segura
MODERADOR+
MODERADOR+
Mensajes: 604
Registrado: Vie, 02 Ene 2009, 19:16

Mensaje: #8821 julia segura
Sab, 30 Ene 2010, 09:39

Hola Cristina:

Prolongas r y s y hallas el circuncentro O. Tomas un punto A1 cualquiera en la recta t y construyes un triángulo semejante al de la solución. Ésto te permite dibujar la mediatriz del lado B1C1y , por lo tanto de BC. Donde se corten la mediatriz y la mediana tienes el punto medio M del lado BC.
A partir de aquí, mediante una homotecia, se puede hallar el resto de los vértices.
Saludos.

Imagen

cristinasanchez
USUARIO
USUARIO
Mensajes: 0
Registrado: Mié, 27 Ene 2010, 14:36

Mensaje: #8822 cristinasanchez
Sab, 30 Ene 2010, 15:58

muchisimas gracias por todo lo q m has ayudado

julianst
COLABORADOR
COLABORADOR
Mensajes: 31
Registrado: Dom, 06 Jun 2010, 08:22

Mensaje: #16501 julianst
Jue, 08 Dic 2011, 20:13

Hala Julia, Me parece no has realizado lo que te piden porque la mediana Ma solución no está en t, ya que el vértice A no pertenece a la recta t dada.
Yo lo he ressuelto del siguiente modo con una homotecia:
-Tomas un segmento AM cualquiera en la recta t.
-Como se conoce la dicección de los lados b y c se hacen paralelas por A
por M se traza un segmento que tal que este punto sea el punto medio y se apoye en B' y C' de las dos rectas anteriores
- se halla el crircuncentro Cr' de este triángulo auxiliar para obtener el segmento Cr-A' auxiliar
-Se realiza por paralelismo el homotético (sin hallar el centro de homotecia)
-
Nc,Nb, Ma en t.doc
(39 KiB) Descargado 124 veces

rojoarq
USUARIO
USUARIO
Mensajes: 0
Registrado: Sab, 23 May 2009, 18:57

triangulo conocidas rectas soporte de dos lados y punto medio del otro

Mensaje: #19608 rojoarq
Vie, 23 Mar 2012, 14:15

Buenas:

Se me plantea el siguiente problema para la resolucion que propone "julianst":

Dadas las rectas que contienen dos lados de un triangulo, un vertice (intersección de las dos rectas dadas) y el punto medio de su otro lado, dibujar el tercer lado.


Gracias

Avatar de Usuario
julia segura
MODERADOR+
MODERADOR+
Mensajes: 604
Registrado: Vie, 02 Ene 2009, 19:16

Mensaje: #19621 julia segura
Sab, 24 Mar 2012, 10:43

Hola:
Es el mismo problema que colocar un segmento entre las dos rectas de tal manera que el punto medio del segmento coincida con el punto dado.
Llama A al punto de intersección y llama M al punto medio dado. Por M trazas la paralela a una de las rectas, que va a cortar a la otra recta en un punto D. Tomas AD=DB, y luego unes B con M y prolongas hasta cortar a la otra recta en el vértice C.
Saludos.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #19989 luisfe
Dom, 22 Abr 2012, 19:35

Hola. antes de nada darte las gracias por tus aportaciones.
La duda que tengo es referente a la recta t. Según la pregunta, t es ña recta soporte de la mediana desde A. El caso es que
no veo tal mediana ni en el triángulo semejante ni en el de la solución. ¿No tendría la recta t que ir finalmente desde A hasta
el punto medio del lado opuesto? .Puede ser también, que no haya entendido la pregunta. Gracias.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #19990 luisfe
Lun, 23 Abr 2012, 00:52

Tras un buen rato pensando en este ejercicio he dado con las siguientes soluciones.
En la 1º solución:
Construyo dos triángulos que respeten las condiciones impuestas por las mediatrices, pero en el 3º lado unicamente señalo
el punto medio. Uniendo estos puntos homólogos me llevan finalmente al triángulo solución.
triángulo rectas soporte 2 mediatrices y una mediana 1º solución.png
1º método triángulo dadas dos rectas soporte de 2 mediatrices y una mediana. lugar geométrico


Y una simplicación del método anterior (la colocación ahora es algo distinta) más algunas explicaciones:
triángulo 2 mediatrices y 1 mediana lugar geométrico Luisfe.png
1º método simplificado. Lugar geométrico


2º Solución.
Esta forma es parecida a la que propuso Julianst ,la cual merece la pena hechar un vistazo y que no había visto hasta ahora (es un documento de word que hay abrir).
Para seguir la construcción, he numerado las rectas en orden de ejecución. Es una solución en la que se emplea la semejanza.

triángulo rectas soporte  2 mediatrices y 1 mediana Luisfe.png
2º método ´triángulo dadas dos rectas soporte de 2 mediatrices y una mediana por semejanza

Adjunto dibujitos.
Última edición por luisfe el Lun, 18 Feb 2013, 18:21, editado 3 veces en total.

julianst
COLABORADOR
COLABORADOR
Mensajes: 31
Registrado: Dom, 06 Jun 2010, 08:22

Mensaje: #23886 julianst
Dom, 03 Feb 2013, 13:05

Hola lusfe:
la segunda solución es correcta, sin embargo me parece que la primera está mal resuelta.
Saludos

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #23889 luisfe
Dom, 03 Feb 2013, 19:20

Hola Julianst. Hace tiempo de éste post, ya casi ni me acordaba.
El procedimiento es correcto
Saludos.


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “POLÍGONOS y PROPORCIONALIDAD”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados