tranformación afín de la elipse en circunferencia

Ejercicios sobre las transformaciones planas.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
estherramos
USUARIO
USUARIO
Mensajes: 0
Registrado: Mié, 29 Dic 2010, 21:01

tranformación afín de la elipse en circunferencia

Mensaje: #13567 estherramos
Jue, 24 Feb 2011, 09:58

Hola:
Tengo un duda sobre afinidad que me gustaría que alguien me echara una mano. En la imagen que adjunto dados los diámetros conjugados de la elipse y el eje, se resuelve la afinidad con una circunferencia sin ningún dato más, lo que no entiendo es por qué para hallar la dirección de afinidad O-O' se une el punto M con el a, y por otro lado, si el ejercicio es reversible (dada la circunferencia hallar por afinidad la elipse), al intentar hacerlo no sé como hallar la dirección de afinidad O'-O. Muchas gracias.
Adjuntos
afinidad-30a.gif

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


julianst
COLABORADOR
COLABORADOR
Mensajes: 31
Registrado: Dom, 06 Jun 2010, 08:22

Mensaje: #13606 julianst
Sab, 26 Feb 2011, 17:50

En esta tanformación afin de la elipse en una circunferencia, es mejor centrarse en la transformación del paralelogramo circunscrito a la elipse en los puntos de tangencia ABCD que son los extremos de los ejes congugados en el cuadrado circunscrito a la circunferencia A'B'C'D' extremos de dos ejes perpendiculases de la circunferencia. En la mayor parte de los libros el centro O' de la circunferencia lo obtienen por la interección de dos arcos capaces: uno de 90º del segmento cb (utilizado aquí) por ser ortogonales los lados del cuadrado y el otro arco capaz 45º entre ab o también de ac por formar la diagonal del cuadrado con el lado 45º. En este ejercicio la recta afin de la diagonal del paralelogramo la ha considerado la bisectriz del ángulo aO'b y por ser la bisectriz de un ángulo inscrito en una circunferencia va a dividir su arco comprendido en dos partes iguales por lo tanto va a pasar por el punto M y por el punto doble "a" del eje de afinidad.
Este ejercicio es la primera parte del ejejercicio que sirve para hallar los ejes principales de la elipse. El punto de corte de la mediatriz ente O y O' con el eje de afinidad es en centro de la circunferencia que pasa por los centros O y O' y corta al eje en los puntos los cuales son también la intersección de los ejes principales de la elipse con el eje.
Saludos.

estherramos
USUARIO
USUARIO
Mensajes: 0
Registrado: Mié, 29 Dic 2010, 21:01

Mensaje: #13607 estherramos
Sab, 26 Feb 2011, 21:56

Gracias por tu contestación, me ha resuelto dudas, pero aún no sé como hacer el ejercicio de forma inversa, es decir, partiendo de la circunferencia para hallar los diámetros de la elipse, ya que cuando hago el arco capaz de 90 grados con respecto al eje, y divido el ángulo de 90 en dos para hacer un ángulo de 45 grados que sea afín a la que será la diagonal (a L) del paralelogramo donde se va situar la elipse, me falta la dirección de afinidad O'-O.
Saludos.

julianst
COLABORADOR
COLABORADOR
Mensajes: 31
Registrado: Dom, 06 Jun 2010, 08:22

Mensaje: #13608 julianst
Sab, 26 Feb 2011, 22:13

Si se tiene una circunferencia de centro O' y el eje de afinidad, cualquier punto del plano puede ser el centro de la elipse de centro O y se pude establecer una afinidad entre ambas figuras, o sea el prblema inverso no tiene sentido.
saludos

estherramos
USUARIO
USUARIO
Mensajes: 0
Registrado: Mié, 29 Dic 2010, 21:01

Mensaje: #13609 estherramos
Sab, 26 Feb 2011, 23:04

He planteado el problema inverso porque el libro donde he visto el ejercicio dice literalmente: "este ejercicio es reversible, resultando de una mayor simplicidad su trazado al proceder inversamente, dada la circunferencia y obteniendo la elipse afín"; ya me parecía difícil cómo averiguar la dirección de afinidad sin que te la den como dato.
Muchas gracias por las respuestas. Un saludo.


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “HOMOLOGÍA, AFINIDAD, HOMOTECIA, SIMETRÍA y GIROS”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados