trazar una elipse a partir de un punto y el eje mayor

Ejercicios sobre elipses, hipérbolas y parábolas.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
aeris
USUARIO
USUARIO
Mensajes: 5
Registrado: Mar, 23 Sep 2008, 14:28

trazar una elipse a partir de un punto y el eje mayor

Mensaje: #2312 aeris
Mar, 23 Sep 2008, 14:35

Verdaderamente este ejercicio me ha desconcertado:

Dado el eje mayor de una elipse AB y un punto P de ella, se pide expresar gráficamente la obtención de la magnitud del otro eje.

¿ Alguien me puede ayudar ?

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4029
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #2315 Antonio Castilla
Mar, 23 Sep 2008, 17:21

.
Elipse conocido el eje mayor, AB, y un punto de ella, P

1 - Determina el punto medio del eje mayor, O
Imagen

2 - Con centro en O y radio la mitad del eje mayor traza una circunferencia

3 - Por el punto dado, P, levanta una perpendicular al eje mayor, y donde corte a la circunferencia es P'

4 - Haz otra perpendicular al eje mayor por O, dando el punto C' en la circunferencia

5 - Une C' con P' hasta cortar al eje mayor, punto X

6 - Unir X con P y donde corte a la perpendicular que se trazó por O es C

7 - La distancia OC es el semieje menor

8 - Ya se conocen el eje mayor y el menor, a partir de ellos dibujar el resto de la elipse

aeris
USUARIO
USUARIO
Mensajes: 5
Registrado: Mar, 23 Sep 2008, 14:28

Mensaje: #2350 aeris
Mié, 24 Sep 2008, 12:05

Muchas gracias!!!! :-D

FornillosAliste
USUARIO
USUARIO
Mensajes: 0
Registrado: Jue, 11 Nov 2010, 20:06

Mensaje: #16070 FornillosAliste
Mié, 02 Nov 2011, 12:00

Tengo este ejercicio pero con una hipérbola (conozco el eje mayor y un punto P), y estoy intentando adaptarlo a partir de esta solución, pero no lo consigo. ¿Podrías ayudarme? ¡Gracias!

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4029
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #16082 Antonio Castilla
Jue, 03 Nov 2011, 07:27

.
En este caso se ha utilizado una afinidad entre la elipse y una circunferencia, pero no se puede plantear una afinidad entre una hipérbola y una circunferencia. Por lo tanto, no puedes aplicar este caso a la hipébola.

Danos el enunciado completo porque te deben de estar dando algo más.

aurora
USUARIO
USUARIO
Mensajes: 0
Registrado: Lun, 31 Oct 2011, 17:21

Mensaje: #16087 aurora
Jue, 03 Nov 2011, 14:32

Gracias por contestarme. En realidad, el ejercicio que tengo lo ha preguntado alguien en el foro pero está sin contestar, es "Conocemos la circunferencia principal de una hiperbola y un punto de la misma", y piden hallar el lugar geométrico de los focos.

Entonces yo pensé que como hay una solución para cada uno de los infinitos ejes, pues al menos ir viendo con autocad unos cuantos casos, a ver si era capaz de deducir cual era el lugar geométrico de los focos para cada caso. Así que me inventé un eje cualquiera, y traté de deducir el foco para ese eje, (teniendo entonces el eje, la circunferencia ppal y un punto de la misma). Pero no encuentro ninguna propiedad que los relacione. Así que busqué en la elipse porque muchos de los elementos son equivalentes, y encontré este caso.
Pero no conseguí establecer una relación parecida en la hipérbola.

Pascual P.
USUARIO+
USUARIO+
Mensajes: 0
Registrado: Mié, 09 Nov 2011, 13:08

hiperbola a partir del eje real y un punto dado

Mensaje: #16148 Pascual P.
Jue, 10 Nov 2011, 13:21

Hola, soy nuevo en esto. El caso es que la solución a ese problema la encontré el otro día, 4 de noviembre, y aún calentito os quería enviar el dibujo. Aún habría que depurar el trazado, pero por ahora es lo que hay.
Adjuntos
Homo_010.dwg
(30.57 KiB) Descargado 143 veces

MariaB
USUARIO
USUARIO
Mensajes: 0
Registrado: Jue, 13 Dic 2012, 12:50

¿De donde viene eso?

Mensaje: #23022 MariaB
Jue, 13 Dic 2012, 12:57

Me gustaría saber de que teorema o de donde te has sacado eso.

Pascual P.
USUARIO+
USUARIO+
Mensajes: 0
Registrado: Mié, 09 Nov 2011, 13:08

hiperbola a partir del eje real y un punto dado

Mensaje: #23049 Pascual P.
Dom, 16 Dic 2012, 01:31

María, te explico: se trata de transformar por homología la hipérbola en una elipse, de manera que los homólogos de V y V' nos determinan el eje mayor de la elipse, y el menor lo sacamos por afinidad utilizando el homólogo del punto P; la elipse luego 'deshomologa' en la hipérbola buscada. Adjunto otro trazado simplificado: al hacer pasar el eje por V, y RL' por el centro de la hipérbola, se eliminan unas cuantas rayas, la tangente a la elipse, que determina la inclinación de las asíntotas, ahora viene desde el infinito, y es por tanto paralela al eje mayor... Realmente, como la homología la planteamos arbitrariamente, el problema se puede hacer por caminos muy distintos en apariencia, pero la teoría es la misma. Aún estoy dándole vueltas a un trazado híper-resumido, pero bueno, ya caerá.

Esto lo he desarrollado yo por mi cuenta, pero parece que funciona, verdad?
Adjuntos
Homo_016.dwg
(29.37 KiB) Descargado 110 veces

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #23076 luisfe
Lun, 17 Dic 2012, 18:53

Pascual P. escribió:María, te explico: se trata de transformar por homología la hipérbola en una elipse, de manera que los homólogos de V y V' nos determinan el eje mayor de la elipse, y el menor lo sacamos por afinidad utilizando el homólogo del punto P; la elipse luego 'deshomologa' en la hipérbola buscada. Adjunto otro trazado simplificado: al hacer pasar el eje por V, y RL' por el centro de la hipérbola, se eliminan unas cuantas rayas, la tangente a la elipse, que determina la inclinación de las asíntotas, ahora viene desde el infinito, y es por tanto paralela al eje mayor... Realmente, como la homología la planteamos arbitrariamente, el problema se puede hacer por caminos muy distintos en apariencia, pero la teoría es la misma. Aún estoy dándole vueltas a un trazado híper-resumido, pero bueno, ya caerá.

Esto lo he desarrollado yo por mi cuenta, pero parece que funciona, verdad?


:-D ¡¡¡Buenísimo!!! Mis más sinceras felicitaciones. :-D
Con ésto tenemos resuelto el tema de hallar los elementos de la hipérbola sólo conocida su curva.
Gracias.


Saludos


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “CURVAS CÓNICAS”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados