Polígono irregular inscrito *

Ejercicios sobre polígonos y proporcionalidad.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
Antonio Briones
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 30
Registrado: Vie, 29 Oct 2010, 18:27

Polígono irregular inscrito *

Mensaje: #20489 Antonio Briones
Sab, 23 Jun 2012, 10:25

¿Podría alguien resolver este problema por un método geométrico (si no, al menos, algebraicamente)? Este es el enunciado: "Dado un polígono irregular de más de 3 lados y que está inscrito en una circunferencia y del que conocemos la longitud de sus lados pero no sus ángulos, hallar el radio de dicha circunferencia."
Este problema es trivial cuando se trata de un triángulo; pero creo que ya se complica con un cuadrilátero, incluso aplicando el teorema de Ptolomeo.
¡GRACIAS!

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Antonio Briones
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 30
Registrado: Vie, 29 Oct 2010, 18:27

Polígono irregular inscrito

Mensaje: #20495 Antonio Briones
Dom, 24 Jun 2012, 11:06

Creo que este enunciado es más correcto: "Dada una serie de segmentos, (en número mayor que 3) de distintas medidas conocidas, formar con ellos un polígono irregular, de manera que todos sus vértices sean concíclicos, quedando inscrito en una circunferencia cuyo radio hay que averiguar."
Pienso que para cada serie de segmentos solo existe una circunferencia que cumpla esta condición, y que incluso esta seria la misma aunque cambiáramos el orden en que los segmentos se unen entre sí, ya que los arcos que determinan no cambiarían, y la suma de todos esos arcos daría siempre la longitud de la circunferencia que buscamos.
El archivo que adjunto muestra el problema ya resuelto, aunque con trampa (primero tracé la circunferencia y sus contenido).

Imagen

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20496 luisfe
Dom, 24 Jun 2012, 11:20

El problema no parace nada sencillo. Lo que creo que es cierto, es que si nos dan los lados por ejemplo de un cuadrilatero y nos dicen además que es inscriptible en una circunferencia, da como resultado UN SÓLO RADIO POSIBLE.
Pueden configurarse unos pocos cuadriláteros según en que orden coloquemos los lados, pero siempre inscrito en la misma circunferencia (mismo radio). Tendría que haber una forma de resolverlo pero no la encuentro. Digo yo, que si se puede hacer con "palillos" se tendrá que poder hacer de alguna otra forma.
Saludos.
Última edición por luisfe el Mar, 26 Jun 2012, 17:41, editado 1 vez en total.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20497 luisfe
Dom, 24 Jun 2012, 12:31

Perdona Antonio Briones. Por lo visto hemos coincidido al responder, no había visto tu mensaje.

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #20563 fernandore
Sab, 30 Jun 2012, 19:57

He encontrado la resolucion del problema para el caso de un cuadrilatero.La solucion está publicada por los autores Manuel Guiu Casanova y Florencio Páez Serrano

Imagen

1-Situar el lado AD sobre una recta cualquiera.
2-Sobre esa recta situar el punto E tal que AE=ac/b
3-Por el punto E situamos el punto 1,llevando desde E la distancia del lado AB (en una direccion arbitraria)
4-Por el punto D llevamos la distancia BC=b sobre una direccion paralela a E1(llevamos la distancia hacia ambos lados,situando los punto 2 y 3)
5-Unimos 1 con 2 y 1 con 3,proporcionandonos los puntos M y N sobre la recta AD.
6-Con diametro MN,trazamos la circunferencia q pasa por ambos puntos M y N
7-A partir del punto A llevamos el lado AB=a de forma q B está sobre la circunferencia.
8-Trazamos lacircunferencia q pasa por ABD y terminamos de trazar el cuadrilatero

Salu2

Antonio Briones
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 30
Registrado: Vie, 29 Oct 2010, 18:27

Perfecto

Mensaje: #20564 Antonio Briones
Sab, 30 Jun 2012, 22:33

¡Qué hermosa es la geometría! Gracias, Fernandore.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20565 luisfe
Dom, 01 Jul 2012, 00:50

Buenísimo, ¡bravo!.
Funciona. Gracias Fernandore por compartir la "magia".

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #20568 fernandore
Dom, 01 Jul 2012, 11:26

luisfe escribió:Buenísimo, ¡bravo!.
Funciona. Gracias Fernandore por compartir la "magia".


Antonio Briones escribió:¡Qué hermosa es la geometría! Gracias, Fernandore.


Ante el entusiasmo generalizado de mi publico :lol: :lol: :lol: :lol: :lol: :lol: :lol: :lol: no he tenido mas remedio q devanarme los sesos para entender la construccion geometrica q he puesto.
Una vez comprendida,cuando tenga un rato la voy a ir desgranando (id repasando los conjugados armonicos :-D :-D )
Vamos a descubrir el truco de la magia :lol:

Salu2

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #20569 luisfe
Dom, 01 Jul 2012, 11:41

Esperaremos. muchas gracias :-D .

Antonio Briones
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 30
Registrado: Vie, 29 Oct 2010, 18:27

Cuaterna armónica

Mensaje: #20570 Antonio Briones
Dom, 01 Jul 2012, 16:47

Me encantará conocer la explicación. Gracias.
Ahora me pregunto si existirá un método general para cualquier polígono. Una cosa sí es cierta: solo puede haber una y solo una circunferencia que cumpla la condición de inscribir a un determinado polígono irregular. Y yo soy de la opinión de que cuando un problema tiene una única solución esta es descubrible. Pero tras ver la complejidad de lo que muestras para un cuadrilátero, me imagino que para un decágono, pongo por caso, la cosa debe ser peliaguda.


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “POLÍGONOS y PROPORCIONALIDAD”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 1 invitado