Conocido un triángulo, colocarlo de forma que apoye en tres rectas *

Ejercicios sobre polígonos y proporcionalidad.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
qiqete
USUARIO
USUARIO
Mensajes: 0
Registrado: Vie, 04 Mar 2011, 15:20

Conocido un triángulo, colocarlo de forma que apoye en tres rectas *

Mensaje: #22715 qiqete
Lun, 26 Nov 2012, 19:14

Sabiendo que un triángulo tiene lados de magnitudes a, b y c conocidas. Hayar la posicion de los vértices del triángulo (A,B,C) sabiendo que están dispuestos sobre tres rectas que convergen en un punto(r,s,t).
Si me pudieseis ayudar será fantástico, llevo rato intentando resolverlo por autocad y me resulta imposible, tanto por papel como ordenador.


figura10/triangulo_-18a

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22720 luisfe
Mar, 27 Nov 2012, 01:00

Hola. Seguro que hay otro método más simple que éste, pero éste método funciona y si además la necesidad obliga pués adelante con ello ;-) . Es un poco como matar moscas a cañonazos.
El lugar geométrico de un tercer vértice mientras los otros dos se deslizan por sus rectas es una elipse cuyo centro es el vértice de las tres rectas.
Para hallar éste LG coloca el triángulo dado de dos maneras diferentes tal y como te muestro (hay otras también) y marcar los puntos del vértice libre. esos serán 2 puntos de nuestra elipse y como tenemos el centro, sus simétricos también. Se puede ver que tenemos dos diámetros conjugados (a mi parecer están como invertidos :roll: , ya lo miraré con más atención) con los que construir los ejes de la elipse y sin dibujarla hallar la intersección con la recta pertinente y obtener el punto exacto.
Yo recurrí a un 5º punto por que lo hice con ordenador (muy fácil). También mediante homología sería posible construir la elipse.
Se halla un 5º punto, moviendo el triángulo en otra posición.

Repito, que seguro que hay alguien o yo mismo (si tengo tiempo) que resuelva ésto de otra manera mucho
más sencilla.
La verdad es que el ejercicio se antoja interesante pero ahora no se me ocurre nada más :roll: .
Saludos.
Adjuntos
triángulo escaleno  en tres rectas congruentes mediante lugar geométrico.png
triángulo en tres rectas congruentes mediante lugar geométrico
Última edición por luisfe el Mar, 27 Nov 2012, 20:18, editado 5 veces en total.

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #22721 fernandore
Mar, 27 Nov 2012, 04:59

A mi lo primero q se me ocurre es dibujar el triangulo (conocemos las tres medidas) y luego trazmos 2 arcos capaces en sendos lados (previamente habremos "medido" los angulos q forman las rectas dadas)
Es como hacer el problema alreves :mrgreen: :mrgreen:

Salu2

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22722 luisfe
Mar, 27 Nov 2012, 08:27

Hola fernandore. Tienes razón. No te lo creerás pero de camino al trabajo me lleve las manos a la cabeza al ver esa misma solución. Como siempre te me adelantas. :oops: Ya conoces mi obsesión por lo lugares geométricos. Muchas gracias. :-D. Yo ahora escribo desde el móvil pero estaría bien que ilustraras el dibujo por bien de la comunidad. O si quieres lo hago yo esta noche. Saludos.

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #22723 fernandore
Mar, 27 Nov 2012, 11:06

Aqui esta resuelto el trazado de como se trazaria (ojo,es un ejercicio con distinto enunciado porq plantea directamente los arcos capaces en el enunciado)
viewtopic.php?f=5&t=3289&start=0

Salu2

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

¿ejes conjugados?

Mensaje: #22733 luisfe
Mar, 27 Nov 2012, 20:41

Hola. otra vez Fernandore. Ya sé que no merece mucho la pena lo que posteé en un principio pero
ahora que lo vuelvo a ver y quiero hallar los ejes reales de la elipse con los supuestos ejes conjugados, no obtengo la elipse trazada, si no una que es simétrica a ella.

En resumidas cuentas que dichos ejes no son realmente conjugados,
ya que si trazamos paralelas a uno de ellos los puntos medios de éstas no pasan por el otro eje.
Entonces no sé como aprovechar ahora éstos "pseudoconjugados" para construir mis ejes, lo miraré más adelante.
Imagino que habrá algún modo de operar directamente con esos ejes, seguro.
La elipse la tracé en un principio utilizando los 5 puntos con el ordenador (fácil).
Saludos.
Última edición por luisfe el Mar, 27 Nov 2012, 21:20, editado 1 vez en total.

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #22736 fernandore
Mar, 27 Nov 2012, 21:12

luisfe escribió:Hola. otra vez Fernandore. Ya sé que no merece mucho la pena lo que posteé en un principio pero...


Todo lo q tu posteas merece la pena,te lo aseguro ;-)

Salu2

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22737 luisfe
Mar, 27 Nov 2012, 21:19

fernandore escribió:
luisfe escribió:Hola. otra vez Fernandore. Ya sé que no merece mucho la pena lo que posteé en un principio pero...


Todo lo q tu posteas merece la pena,te lo aseguro ;-)

Salu2

No me quedo tranquilo si no te doy las gracias por ese comentario.
Gracias :-D .

qiqete
USUARIO
USUARIO
Mensajes: 0
Registrado: Vie, 04 Mar 2011, 15:20

Mensaje: #22753 qiqete
Mié, 28 Nov 2012, 18:13

Gracias a los 2, las rectas ya venian dadas, por lo que me quedé con el primero. Muchas gracias, esta página esta de lujo!
También ayudaria yo si dominase mas con ordenador, pero esta vez no se me ocurria nada gracias de nuevo por contestar tan rapido.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

He de reconocer que..

Mensaje: #22755 luisfe
Mié, 28 Nov 2012, 18:42

Hola qiqete. Fue la primera idea que me vino a la cabeza (a la segunda llegué tarde).
De todos modos he de reconocer que el procedimiento que comenta Fernandore es mucho más sencillo y más "llevable" al papel.

Una vez que hallas los arcos capaces y el punto de intersección P , llevas las distancias PA, PB y PC
sobre tus rectas originales y ya tienes los puntos.
Y gracias a ti.
Adjuntos
triángulo en 3 rectas concurrentes por arcos capaces.png
triángulo en 3 rectas concurrentes mediante arcos capaces


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “POLÍGONOS y PROPORCIONALIDAD”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 1 invitado