Tangencias por inversión - II *

Ejercicios sobre inversión.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
AM_Dibujo
USUARIO
USUARIO
Mensajes: 2
Registrado: Sab, 01 Dic 2012, 18:34

Tangencias por inversión - II *

Mensaje: #22804 AM_Dibujo
Sab, 01 Dic 2012, 19:02

Buenas tardes.
Tengo un ejercicio de tangencias que debo resolver por inversión (la inversión la llevo fatal) y no soy capaz de sacarlos. Ruego ayuda, por favor.


Ej 2: Trazar las circunferencias tangentes a otras dos dadas, de centros C1 y C2, conociendo el punto de tangencia Tc en una de ellas.

Muchas gracias de antemano.
Un saludo.

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22817 luisfe
Dom, 02 Dic 2012, 12:45

Hola. Si hay que hacerlo por inversión...no se...
Te mando un apunte que podría ser interesante.
No es una solución, ni significa que tengas que empezar por ahí.
Saludos.
Adjuntos
tangencia CCP con T en una de ellas apunte potencia  inversión.png
apunte 1º intento
Última edición por luisfe el Lun, 03 Dic 2012, 00:40, editado 2 veces en total.

AM_Dibujo
USUARIO
USUARIO
Mensajes: 2
Registrado: Sab, 01 Dic 2012, 18:34

Mensaje: #22824 AM_Dibujo
Dom, 02 Dic 2012, 17:14

Gracia por la respuesta, aunque esta solución es por potencia, por lo que veo, ¿no?

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22830 luisfe
Dom, 02 Dic 2012, 18:12

Hola. No era la solución, sólo un apunte para empezar a reflexionar.
Creo que lo tienes en éste enlace.
viewtopic.php?f=7&t=1923&start=0
Saludos.

AM_Dibujo
USUARIO
USUARIO
Mensajes: 2
Registrado: Sab, 01 Dic 2012, 18:34

Mensaje: #22832 AM_Dibujo
Dom, 02 Dic 2012, 18:19

¡Muchas gracias!

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #22834 fernandore
Dom, 02 Dic 2012, 18:59

luisfe escribió:Hola. No era la solución, sólo un apunte para empezar a reflexionar.
Creo que lo tienes en éste enlace.
viewtopic.php?f=7&t=1923&start=0
Saludos.


Me ha encantado el "apunte para reflexionar" :-D :-D

Me ha hecho recordar un hilo en el q alguien preguntó q diferencia había entre potencia e inversion.Yo apunté q la potencia es el parametro q define la inversion q es una transformacion geometrica
En la transformacion geometrica llamada "giro" el parametro q define dicha transformacion es el "angulo".Podemos decir q la diferencia entre potencia e inversion es la misma q entre angulo y giro.
Y ahora digo yo,q la inversion q has planteado es como si plantearamos un giro de 360º :lol:

Salu2

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22836 luisfe
Dom, 02 Dic 2012, 20:30

:-D Hola. Bueno... empecé a pensar en como resolverla y reflexionar ..ya que siempre hice
ésta tangencia por potencia. No he planteado en ningún momento que la inversión fuera a realizarse
de ese modo, si no del hecho en sí que se menciona. A veces un giro de 360º no es en vano, te hace ver todo lo que hay a tu alrededor :lol: .

En mi cabeza empece a vislumbrar una mezcla entre potencia e inversión y al final dí con una solución derivada de tales pensamientos que es completamente realizada por inversión.

Aquí mando una versión ligeramente diferente que aprovecha el hecho de saber que hay una circunferencia
que pasa por todos los puntos de tangencia. He de decir que el centro de inversión lo cambié como un "camaleón" :mrgreen: y ahora es el punto de tangencia T dado.

T centro de inversión y valor de tal manera que c1 = c1' (permanece invariable)
s corta perpendicularmente a c1'. y paralela a recta unión O2 T
La inversa de s es la circunferencia s' que corta perpendicularmente a las c1 y a las circunferencias solución (pasando por T).
Por tanto obtenemos los otros puntos de tangencia con los que podemos terminar el ejercicio.
Saludos

Imagen

CCP con punto de tangencia en una de ellas por inversión
Añado éste dibujo (después del 3º comentario de Fernandore):
Adjuntos
CCPt inversión.png
CCPt inversión.png (55.1 KiB) Visto 763 veces

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #22843 fernandore
Lun, 03 Dic 2012, 09:16

luisfe escribió:. A veces un giro de 360º no es en vano, te hace ver todo lo que hay a tu alrededor :lol: .


Oño luisfe,eres mas sabio de lo q imaginaba :-D

Valga este video para seguir con la reflexion
[youtube]http://www.youtube.com/watch?v=JX3VmDgiFnY[/youtube]

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #22844 luisfe
Lun, 03 Dic 2012, 10:11

Hola. Ahora no puedo ver el vídeo desde el movil. El post que envié (el de la reflexionar,jaja) fue un poco como pensar en alto. Ya se que es un perogrullada pero tampoco seas tan cruel conmigo jajaja. Ya veré el vídeo ésta noche. Un abrazo.

Avatar de Usuario
fernandore
MODERADOR+
MODERADOR+
Mensajes: 1843
Registrado: Mar, 03 Jun 2008, 22:27
Ubicación: Melilla

Mensaje: #22846 fernandore
Lun, 03 Dic 2012, 10:20

Lo de la reflexion va en serio.A mi no me parece una perogrullada tu reflexion,de hecho me ha encantado.Tambien me ha encantado lo tu apostilla del giro de 360º,es muy ingeniosa ;-)
Y el video ...es q al hablar de giro e inversion me he acordado de este video q puso Antonio.A mi me parece interesantisimo aunq te anticipo q no tiene mucho q ver con el ejercicio resuelto pero si q está muy bien para seguir reflexionando ;-) (En este video hay muchisima matematica encerrada)
Salu2


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “INVERSIÓN”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados