Triangulo isosceles equivalente de altura del lado desigual 7 cm *

Ejercicios sobre figuras con la misma área o cálculo de áreas.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
ivan_899
USUARIO
USUARIO
Mensajes: 0
Registrado: Lun, 17 Dic 2012, 11:11

Triangulo isosceles equivalente de altura del lado desigual 7 cm *

Mensaje: #23412 ivan_899
Mié, 09 Ene 2013, 10:38

Transformar graficamente un triangulo en un triangulo isosceles equivalente cuya altura correspondiente al lado desigual sea 7 cm.


figura11/triangulo_equivalencia_a_isosceles-_20A.png

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #23437 luisfe
Jue, 10 Ene 2013, 16:57

Hola.
Como los dos triángulos van a tener el producto base por altura igual, entonces de lo que se trata es de buscar éste valor gráfico común a ambos triángulos,
bien mediante medias proporcionales como hago yo aquí o bien mediante multiplicación-división de segmentos (el trazado se suele salir del papel) u otra forma que se imagine.

He construido a un lado dos medias proporcionales para que me den aunque sea indirectamente ese producto (raiz2(baseXaltura))
y poder obtener la base del triángulo isósceles buscado.
Explico con más detalle el procedimiento para los que no se acuerden de obtener dichas medias proporcionales

Para obtener gráficamente el valor del producto (aquí raiz2) de base por altura del primer triángulo:
1. Unimos en un sólo segmento la base y la altura del triángulo que nos dan.
2. trazamos una semicircunferencia con éste segmento como diámetro.
3. Desde el punto de unión U de los dos subsegmentos (base y altura) levantamos
una vertical hasta cortar en P a la semicircunferencia. obteniendo el valor del producto o segmento UP,

Para obtener del triángulo solución el valor de la base, aplicamos la misma "fórmula" pero con otro par de datos.:
la altura y el segmento producto hallado anteriormente.

4.colocamos la altura y por un extremo, levantamos perpendicularmente el segmento producto
5. Trazamos una semicircunferencia con centro en el segmento altura o su prolongación y pase por los extremos libres de dichos segmentos (P y H).
Para ello hemos utilizado la mediatriz (PH) cortando en M .
6. La semicircunferencia corta a la prolongación de la altura en B.
7. El valor de la base del triángulo isósceles es el segmento BU.
8. Sólo queda dibujar un triángulo isósceles con la altura y la base hallada.
Saludos.
Adjuntos
triángulo equivalencia a isósceles.png
triángulo equivalente a isósceles con determinada altura


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “EQUIVALENCIA y ÁREAS”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados