Inversa de un triángulo con el centro de inversión en uno de sus lados. *

Ejercicios sobre inversión.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
SaulRodriguez
USUARIO
USUARIO
Mensajes: 0
Registrado: Jue, 23 Feb 2012, 21:49

Inversa de un triángulo con el centro de inversión en uno de sus lados. *

Mensaje: #24738 SaulRodriguez
Dom, 21 Abr 2013, 17:24

Hola,he resuelto del siguiente ejercicio:

"Determinar la figura inversa del triángulo ABC, conociendo el centro de inversión O y el inverso de A, A'."

Pediría si me podéis decir si la solución sería el resultado de dibujar los arcos que unen los puntos A'. B' Y C' de la imagen que os adjunto.
Muchas gracias y un saludo.

(Nota: los puntos M son las mediatrices)

Imagen

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
iherrero20
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 61
Registrado: Vie, 20 Nov 2009, 15:37

Mensaje: #24743 iherrero20
Lun, 22 Abr 2013, 08:56

Primero hay que hallar los inversos de los puntos, para ello hallamos la circunferencia de puntos dobles (c.p.d.), la mejor manera es hacer pasar un arco capaz de 90º o semicircunferencia por los datos proporcionados O, A y A', por se traza la perpendicular que corta en la semicircunferencia en A[sub]1[/sub], A[sub]1[/sub]O es el radio de la circunferencia buscada o c.p.d.
Ahora hallamos los restantes puntos inversos C' y B', unimos C' y B' con una semicircunferencia y donde corte con la cpd es donde trazamos la perpendicular nos dan los puestos inversos que quedan.
Ahora sólo queda resolver los segmentos inversos, para eso analizamos la cuestión:
b: pasa por el centro de inversión O, luego la inversa es la misma recta sería el segmento C'A'
a: este segmento no pasa por el centro de inversión, su inversa sería una curva que si pasara por el centro de inversión.
Se halla la mediatriz del segmento C'B' y la mediatriz de C'O o B'O, el punto de corte de las mediatrices nos da el centro de la circunferencia que pasa por OC'B', se escoge la parte que pasa sólo por C' y B'.
Se procede del mismo modo con c.

Imagen

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #24747 luisfe
Lun, 22 Abr 2013, 11:25

Hola.
Mi versión.
Saludos

Imagen

Avatar de Usuario
iherrero20
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 61
Registrado: Vie, 20 Nov 2009, 15:37

Mensaje: #24748 iherrero20
Lun, 22 Abr 2013, 11:46

No me queda muy claro porqué se lleva a infinito.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #24752 luisfe
Lun, 22 Abr 2013, 13:01

Hola.
¿Cual es el inverso de un punto que esté muy cerca del centro de inversión (dentro de c. puntos dobles.) , o incluso un punto
que coincida con el centro mismo de inversión?
Ese punto estará muy muy alejado o en el mismo infinito si coincide con el centro. "Pa compensar" diría uno.
Todos los puntos que estén dentro de la circunferencia de puntos dobles tendrán sus inversos
fuera de ella que es lo que le pasa a los puntos del segmento AC que están dentro de la cpd.
Saludos.

Avatar de Usuario
iherrero20
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 61
Registrado: Vie, 20 Nov 2009, 15:37

Mensaje: #24756 iherrero20
Lun, 22 Abr 2013, 14:56

Muchas gracias, entiendo el procedimiento pero esto no lo sabía, para la próxima ya no se me olvida.

SaulRodriguez
USUARIO
USUARIO
Mensajes: 0
Registrado: Jue, 23 Feb 2012, 21:49

Mensaje: #24758 SaulRodriguez
Lun, 22 Abr 2013, 16:48

Muchas gracias a los dos por la ayuda. ¡Un saludo!


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “INVERSIÓN”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados