Dividir cuadrilátero en dos partes equivalentes

Ejercicios sobre figuras con la misma área o cálculo de áreas.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
adelarosa983
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 5
Registrado: Jue, 06 Jun 2013, 16:18

Dividir cuadrilátero en dos partes equivalentes

Mensaje: #25203 adelarosa983
Jue, 06 Jun 2013, 18:46

Dado un cuadrilátero con los cuatro lados desiguales elegimos sobre el lado menor un punto P. Trazar un segmento con origen en P que divida al cuadrilátero en dos partes equivalentes.

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


adelarosa983
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 5
Registrado: Jue, 06 Jun 2013, 16:18

Dividir el cuadrilátero

Mensaje: #25222 adelarosa983
Dom, 09 Jun 2013, 16:42

He encontrado una solución que creo que es la correcta.
La he explicado en un archivo PDF llamado DividirCuadrilatero

Dividir un cuadrilátero en dos partes equivalentes por un segmento de origen un punto dado de su contorno

Imagen

SOLUCIÓN

1. Trazar el triángulo equivalente ADE.
2. Representamos T (ADE) = Área del triángulo y por C (ABCD) el área del cuadrilátero ABCD y con esta notación tenemos T (ADE) = C (ABCD).
3. Trazar M el punto medio de AE.
4. T (ADM) = (1/2) T (ADE) = (1/2) C (ABCD).
5. Unimos P con M.
6. Por el vértice D trazamos una paralela a PM hasta cortar en S al lado AB => DS || PM.
7. Descomponemos el área del triángulo DAM: T(DAM)=T(DAS)+T(DSM)
Los triángulos DSM y DSP tienen igual área pues tienen igual base DS y la altura de cada triángulo es la correspondiente a los vértices M en el primer triángulo y P en el segundo, que se encuentran sobre una misma paralela a la base DS luego la altura es la distancia entre las mismas paralelas y por ello el mismo valor.
T (DAM)=T (DAS)+T (DSM) = T(DAS)+T(DSP)=C(ASPD)
8. Por el punto (3) T(ADM) = (1/2)C(ABCD) = C(ASPD).

CONSTRUCCIÓN

a. Dado el cuadrilátero ABCD y el punto P sobre el contorno.
b. Trabajamos sobre el lado del cuadrilátero opuesto al lado donde se encuentra P, prolongando el lado siempre que sea necesario.
c. Trazar la diagonal DB.
d. Por C paralela a DB hasta cortar al lado AB o a su prolongación => E.
e. Trazar M punto medio de AE.
f. Unir P con M y por D trazar una paralela a PM hasta cortar al lado AB o a su prolongación => S.
g. El segmento PS es la solución al problema.
ABCDEMSPP
Adjuntos
Dividir_cuadrilatero_en_dos_partes_equivalentes.pdf
(200.73 KiB) Descargado 233 veces

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #25225 luisfe
Dom, 09 Jun 2013, 19:29

Muy bueno, para mí está perfecto :-D .
Además, aplicando el mismo método se puede dividir no sólo en 2 partes, si no en las que queramos, dividiendo el triángulo equivalente en la proporción deseada. (siempre y cuando no se salga de los límites, por que si no, habría que modificar un poco
el desarrollo)
Gracias por compartirlo.
Saludos


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “EQUIVALENCIA y ÁREAS”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados