Giro de un sistema articulado (tapa giratoria). *

Ejercicios del sistema diédrico o de Monge.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
TonyGM
USUARIO
USUARIO
Mensajes: 0
Registrado: Mar, 24 Ene 2012, 18:07

Giro de un sistema articulado (tapa giratoria). *

Mensaje: #27317 TonyGM
Sab, 21 Dic 2013, 12:47

En el sistema articulado representado en posición inicial, se tira en dirección d del tirante t que pasa a través del orificio O y que está anclado en el punto A a una tapa giratoria. La posición final del sistema articulado es aquella en la cual el punto A de la tapa incrementa su cota en 35'6 mm. Determinar y representar:
1. La longitud del tramo del tirante OA en la posición inicial.
2. La posición final de la tapa giratoria.
3. La V.M. del ángulo formado por la tapa giratoria en la posición final, con el plano horizontal.
4. La V.M. del ángulo formado por la tapa giratoria con el tirante, en la posición final.




Hola muy buenas, aquí dejo un ejercicio de giros y un par de croquis del mismo (hechos muy rápidamente):

Imagen
Imagen
Imagen


La resolución del problema en sí creo que la tengo clara, pero al hacerlo en la lámina hay una cosa que no me convence. Cuando hago el cambio de plano y saco A1" y O1", al unir estos puntos obtengo la nueva proyección vertical de la recta "t". Bien, una vez hecho esto incremento la cota de A1" en 35,6 mm y así conseguimos (A1") sobre t1". El siguiente paso sería pinchar con el compás en D1"-C1" y llevarme E1"-F1" sobre t1" para obtener (E1")-(F1"). El problema lo encuentro en que me ha dado por comprobar si pinchando en D1"-C1" y llevándome A1" sobre t1" me coincide con el (A1") obtenido anteriormente y no es así (como se aprecia en la lámina) cuando creo que sí debería coincidir.

No sé dónde me he podido equivocar.

Un saludo y felices fiestas.

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


TonyGM
USUARIO
USUARIO
Mensajes: 0
Registrado: Mar, 24 Ene 2012, 18:07

Mensaje: #27322 TonyGM
Sab, 21 Dic 2013, 16:34

Aquí dejo la solución al ejercicio:


Imagen

Avatar de Usuario
Celedonio
MODERADOR
MODERADOR
Mensajes: 1422
Registrado: Lun, 10 Sep 2012, 17:24

Mensaje: #27331 Celedonio
Sab, 21 Dic 2013, 18:22

Los tres primeros cálculos están bien.
El cuarto No ( ángulo beta),tienes que hacer más cambios para ver el ángulo beta en verdadera magnitud.
Te mando un boceto de estudio


Imagen

Saludos

TonyGM
USUARIO
USUARIO
Mensajes: 0
Registrado: Mar, 24 Ene 2012, 18:07

Mensaje: #27332 TonyGM
Sab, 21 Dic 2013, 19:09

Es cierto, tengo que tener cuidado con cosas como esa. Muchísimas gracias por el boceto, muy claro todo.

Saludos!

TonyGM
USUARIO
USUARIO
Mensajes: 0
Registrado: Mar, 24 Ene 2012, 18:07

Mensaje: #27335 TonyGM
Sab, 21 Dic 2013, 23:54

He estado repasando tu boceto para calcular el ángulo beta y creo que esos dos cambios de plano que hacen falta no me entran en el formato...

Y otra cosa, ¿cómo sabes dónde "cae" exactamente el punto T en la proyección horizontal original?

Avatar de Usuario
Celedonio
MODERADOR
MODERADOR
Mensajes: 1422
Registrado: Lun, 10 Sep 2012, 17:24

Mensaje: #27347 Celedonio
Dom, 22 Dic 2013, 19:07

Los bocetos son apuntes para estudiar y pueden diferir de la visión final del problema, aparte que no tienen en cuenta la situacion geográfica de los elementos.
En este nuevo gráfico que te envió , está todo bien ubicado, mira a ver si te ayuda algo.


Imagen

A tu pregunta " por donde cae " el punto T, creo que lo verás fácil en el gráfico, desde T3 perpendicular

Saludos

TonyGM
USUARIO
USUARIO
Mensajes: 0
Registrado: Mar, 24 Ene 2012, 18:07

Mensaje: #27349 TonyGM
Dom, 22 Dic 2013, 19:26

Antes de ver tu nuevo boceto, había sacado la VM del ángulo beta de otra forma: mediante el procedimiento general de ángulo entre dos rectas que se cortan. He considerado las rectas A-T y A-O. A través de un plano horizontal H' he calculado los puntos intersección de éste con las rectas (1 y 2 respectivamente) y una vez aquí he abatido el punto A usando como charnela la recta que une 1 y 2. El ángulo es el que resulta de unir A abatido con 1 y 2.

¿Crees que está bien como lo he hecho?
Imagen


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “SISTEMA DIÉDRICO o de MONGE”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados