triángulos equiláteros con uno de sus lados apoyados en un lado del pentágono *

Ejercicios sobre polígonos y proporcionalidad.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
alex05
USUARIO
USUARIO
Mensajes: 4
Registrado: Mié, 13 Feb 2013, 19:31

triángulos equiláteros con uno de sus lados apoyados en un lado del pentágono *

Mensaje: #28639 alex05
Mar, 06 May 2014, 23:59

Cinco triángulos equiláteros están dibujados con uno de sus lados apoyado en un lado del pentágono irregular. Encontrar los vértices del pentágono si se conocen los vértices de los triángulos que no están en contacto con los del pentágono.

Alguien me explica como es ?Gracias

Imagen

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Seroig
MODERADOR
MODERADOR
Mensajes: 166
Registrado: Lun, 18 Nov 2013, 08:09

Mensaje: #29098 Seroig
Jue, 12 Jun 2014, 18:53

El pentágono que se desea es un pentágono de lados paralelos (entonces infinitas soluciones si no se conocen las dimensiones de los triángulos equiláteros) al pentágono regular cuyos lados pasan por los puntos dados ABCDE
Entre dos puntos (AD) trazamos el arco capaz para 108º y la mediatriz, el arco capaz y la mediatriz se cortan en un punto de la diagonal
Repetimos el proceso y conseguimos un punto de cada diagonal
Las diagonales se cortan con un ángulo de 72º, con dos arcos capaces situaremos el centro del pentágono...
Saludos

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #29140 luisfe
Jue, 19 Jun 2014, 18:40

Hola.
Seroig: me intriga un poco lo que dices.
Puede ser que algo se me escape en el enunciado o en tu explicación, pero para mí el ejercicio tiene solución única (quizás 2, no estoy seguro)
Más tarde, ahora no puedo, preparo un dibujito.
Saludos.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #29149 luisfe
Jue, 19 Jun 2014, 23:21

Hola.
El método lo llamaría :loco: "try egain" o "inténtalo otra vez".
Si el ejercicio nos diera un punto del pentágono,tan sólo un vértice, la cosa sería muy fácil;
sería ir dibujando triángulos en un sentido o en otro uno por uno hasta completar la figura pedida.
Pero como no tenemos ningún vértice del pentágono habrá que buscarlo.
Empezamos por un hipotético vértice del pentágono y construimos los triángulos equiláteros como dijimos, al final tendremos que el último y el primero no cierran la figura.
Cada punto hipotético queda separado de su correspondiente punto real a la misma distancia que el resto y en una dirección
de 60º grados alternativamente. El primer punto y el último (hipotéticos) están a la misma distancia del punto real, ¡perfecto!

Levantamos entonces un triángulo equilátero más sobre éstos puntos que no cierran. El vértice libre de dicho triángulo será
un vértice del pentágono buscado, :sorprendido: . Ahora ya es pan comido.
El procedimiento se puede optimizar bastante dependiendo de donde coloquemos el primer punto de prueba (X), yo aquí lo he colocado en cualquier sitio.

Imagino que habría por lógica 2 soluciones, la segunda los triángulos quedarían interiores al pentágono.
Mi intuición me dice que habría otros métodos para resolver el ejercicio, pero de momento lo dejamos aquí.


Saludos.

Imagen

Seroig
MODERADOR
MODERADOR
Mensajes: 166
Registrado: Lun, 18 Nov 2013, 08:09

Mensaje: #29150 Seroig
Vie, 20 Jun 2014, 06:02

Parece que este enunciado nos ha confundido a algunos, de principio, a mi parecer, creo se confundió Del1al10 por un comentario que apareció y ahora veo que también lo estaba yo. Yo consideré triángulos equiláteros iguales de lado "l" apoyando sus lados en un pentágono regular. Pero veo que son triángulos equiláteros distintos cuyos lados forman el pentágono (irregular)
Gracias

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

pentágono y triángulos equiláteros anexos

Mensaje: #29173 luisfe
Dom, 22 Jun 2014, 19:09

Una animación de apoyo a lo planteado.
También comentar que depende lógicamente en que orden asociemos los triángulos (interiores o exteriores) con los puntos dados, obtendremos otras posibles soluciones al ejercicio. Lo importante es comprender el trasfondo: el 1º vértice y resto hipotéticos son producto de la misma traslación y giro respecto de los vértices reales.



Saludos.

Imágenes alternativas :

Imagen

Imagen

Seroig
MODERADOR
MODERADOR
Mensajes: 166
Registrado: Lun, 18 Nov 2013, 08:09

Mensaje: #29174 Seroig
Dom, 22 Jun 2014, 21:29

Pues yo había entendido algo similar a esto
Pentágono.bmp
Pentágono.bmp (879.07 KiB) Visto 434 veces

Hasta dudo de mi nombre :confuso:

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #29175 luisfe
Dom, 22 Jun 2014, 22:26

Seroig: Eso parece otro problema amigo mío :loco: , creo yo, por lo que se puede entender del enunciado:

Cinco triángulos equiláteros están dibujados con uno de sus lados apoyado en un lado del pentágono irregular. Encontrar los vértices del pentágono si se conocen los vértices de los triángulos que no están en contacto con los del pentágono.

Lo que se echa un poco de menos es alguna señal de quién pregunto en un principio. ¿no crees?... bueno todavía es pronto.
La duda es saludable
Saludos

alex05
USUARIO
USUARIO
Mensajes: 4
Registrado: Mié, 13 Feb 2013, 19:31

Mensaje: #29176 alex05
Dom, 22 Jun 2014, 22:58

gracias por el interes, nadie lo estaba sacando asi que nos dieron otra <<pista>> mas en esta imagen estan los cinco puntos rosas de la solucion pero ahi que decir como se sacan

Imagen

Seroig
MODERADOR
MODERADOR
Mensajes: 166
Registrado: Lun, 18 Nov 2013, 08:09

Mensaje: #29177 Seroig
Lun, 23 Jun 2014, 05:21

Gracias Luisfe, ahora leo lo de irregular, efectivamente, Seroig :loco: estaba en otro lugar...
Saludos


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “POLÍGONOS y PROPORCIONALIDAD”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados