Triangulo sin conocer punto afin

Ejercicios sobre las transformaciones planas.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
Avatar de Usuario
del1al10
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 13
Registrado: Sab, 08 Mar 2014, 18:52

Triangulo sin conocer punto afin

Mensaje: #28709 del1al10
Mar, 13 May 2014, 20:31

He dejado un poco bastante los temas estos de geometria y estoy un poco perdido.
Podríais echarme una mano a dar con la solución sin tener ningún punto afin?


Imagen

Saludos!

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
del1al10
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 13
Registrado: Sab, 08 Mar 2014, 18:52

Mensaje: #28712 del1al10
Mar, 13 May 2014, 21:27

He conseguido sacar el triángulo, y os lo muestro. Pero cómo sigo? No tengo ningun punto de referencia para empezar.. :dudoso:

Creo que es un examen de PAU de madrid

Avatar de Usuario
del1al10
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 13
Registrado: Sab, 08 Mar 2014, 18:52

Mensaje: #28713 del1al10
Mar, 13 May 2014, 21:38

He conseguido la solución, pero porque la he buscado por Internet, pero no sé ni cómo lo han hecho y ni por qué hacen eso...

Alguien que pueda explicarme tanta linea y tanta historia?

Yo de afinidad, sé que si unes A con B, y donde toca en el eje lo unes con A', si desde B tiras una recta con la direccion de afinidad, donde corte a la otra recta será B'. Vamos, lo justito.


Imagen

Saludos!

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4027
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #28719 Antonio Castilla
Mié, 14 May 2014, 08:36

.
Debes de recordar algunos principios básicos :

a) Un punto y su afín están en una recta paralela a la dirección de afinidad.
b) Si se prologa una recta hasta cortar al eje de afinidad, desde ese punto parte su recta afín.
c) El arco capaz de un segmento son los infinitos puntos que unidos con los extremos del segmento forman un mismo ángulo. Y en concreto, el arco capaz de 90º es una semicircunferencia de centro el punto medio del segmento.

Aplicando todo esto (aunque primero lo voy a hacer ligeramente distinto a como está en la solución que das) :

1 - Si se prolonga el lado AC hasta cortar al eje de afinidad, punto X, desde ese punto partirá la afín A'C'.

2 - Si se prolonga el lado BC hasta cortar al eje de afinidad, punto Y, desde ese punto partirá la afín B'C'.

3 - Ambas rectas A'C' y B'C' se cortan en el punto C'. El vértice C' forma un ángulo de 90º, luego y sus prolongaciones cortan al eje en los mismo puntos que AC y BC (punto X e Y), por lo tanto podemos trazar el arco capaz de 90º respecto de XY, es decir, hallamos el punto medio de XY y con radio hasta X o Y trazamos una semicircunferencia. En ella estará C'.

4 - Si por C se dibuja una paralela a la dirección de afinidad, en ella estará C'. Donde corta al arco capaz será el vértice C'.

5 - Uniendo C' con X e Y tenemos las rectas A'C' y B'C'. Dibujar paralelas a la dirección de afinidad por por A' y B', donde corte a las anteriores son dichos vértices.

En la solución que das se ha realizado lo mismo pero con una traslación inicial, que no hace falta pero que podría ser útil si los puntos X e Y saliesen fuera de los límites del papel.

Avatar de Usuario
del1al10
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 13
Registrado: Sab, 08 Mar 2014, 18:52

Mensaje: #28722 del1al10
Mié, 14 May 2014, 14:53

Aaaanda... no había caído yo en la tontería... He visto eso de la traslación y me ha desorientado muchísimo...

Muchas gracias Antonio Castilla! :muy_bueno:

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4027
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #28729 Antonio Castilla
Mié, 14 May 2014, 20:01

.
El triángulo inicial ABC no lo has determinado bien porque has supuesto que es rectángulo.

El enunciado dice que el triángulo rectángulo es el afín A'B'C' no el inicial ABC.

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4027
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #28743 Antonio Castilla
Jue, 15 May 2014, 15:46

.
No, el triángulo ABC sigue mal. Recordamos un par de propiedades :

- Las medianas van desde un vértice hasta el punto medio del lado opuesto (aquí está es el error que has cometido).
- El baricentro está sobre las medianas y a un tercio del lado o dos tercios desde el vértice.

Aplicando todo esto :

I - Unir el vértice A con el baricentro O y dividir el AO en dos partes. Llevar una de esas divisiones hacia el otro lado y tenemos el punto medio M del lado BC.

II - Unir el vértice B con el baricentro O y dividir el BO en dos partes. Llevar una de esas divisiones hacia el otro lado y tenemos el punto medio N del lado AC.

Para localizar los puntos M y N también se puede utilizar el procedimiento que has empleado.

III - Unir A con N y B con M. Donde se corten es el vértice C.

Avatar de Usuario
del1al10
CONTRIBUIDOR
CONTRIBUIDOR
Mensajes: 13
Registrado: Sab, 08 Mar 2014, 18:52

Mensaje: #28754 del1al10
Jue, 15 May 2014, 23:12

Ahora sí que me dan paralelas AB y A'B'

Ya si que no creo que tenga ningún fallo. Muchas gracias Antonio! :brindis:

Dejo el ejercicio resuelto



Saludos

Imágenes alternativas :

Imagen

Imagen

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4027
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #28755 Antonio Castilla
Jue, 15 May 2014, 23:35

.
Sí. Ahora está todo correcto.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #28763 luisfe
Vie, 16 May 2014, 23:01

Hola.
Si me permites Antonio sería importante también recalcar para aquellos que empiezan con la materia, que la dirección de afinidad no tiene por que ser (y de hecho no lo es aquí) ORTOGONAL al eje de afinidad, ni tampoco presuponer que el lado AB sea paralelo al eje y en consecuencia tampoco el afín A'B'.
Saludos.
Adjuntos
lisa simpson3.jpg
lisa simpson3.jpg (3.51 KiB) Visto 242 veces


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “HOMOLOGÍA, AFINIDAD, HOMOTECIA, SIMETRÍA y GIROS”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados