Inverso de un triángulo cualquiera a ¡equilátero! (vértices)

Ejercicios sobre inversión.
Reglas del Foro
Imagen BUSCA EN LOS ÍNDICES antes de preguntar (pulsa aquí)

- Escribir los enunciados completos, incluir una imagen y lo que tienes hecho hasta ahora.

Imagen El usuario que no conteste o no dé las gracias después de responderle será expulsado
jluis.coll
USUARIO
USUARIO
Mensajes: 5
Registrado: Vie, 18 Oct 2013, 13:21

Inverso de un triángulo cualquiera a ¡equilátero! (vértices)

Mensaje: #30126 jluis.coll
Dom, 02 Nov 2014, 17:55

Hallar el centro de inversión que transforma tres puntos dados no alineados en los vértices de un triángulo equilátero.

En el ejercicio http://trazoide.com/blog/inversion_999/ se explica el inverso de un triangulo y se obtiene un triangulo curvilineo,

Imagen

y en el http://trazoide.com/blog/inversion_991/ interpreto que se trata de que los vértices de este triangulo curvilíneo sean equidistantes.

Me pregunto si independientemente de cuales sean los puntos de partida siempre sus inversos serán equidistantes???

videos de dibujo tecnico trazoide
dibujo mecanico e industrial trazoide


Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4028
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #30128 Antonio Castilla
Dom, 02 Nov 2014, 19:26

.
El problema está mal resuelto, porque según dice el enunciado partimos de tres puntos no alineados y debemos buscar el triángulo equilátero, mientras que la solución se ha planteado al revés, con el triángulo equilátero se han buscado los tres puntos.

Es un problema que se publicó hace mucho tiempo, y seguramente durante los cambios que hice de un servidor a otro y de un lenguaje a otro, acabé mezclando dos problemas parecidos pero distintos.

A ver si encuentro un ratillo y lo modifico.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #30137 luisfe
Lun, 03 Nov 2014, 10:33

Por echar una manilla a Antonio hasta que prepare su dibujo, adelantaré que las intersecciones de las circunferencias de Apolonio respecto del triángulo dado son los centros de inversión positiva o negativa .El valor de +- r(K) puede ser el que queramos, por tanto habrá infinitas soluciones pero por lo general partirán de 2 básicas (2 intersecciones) y las demás semejantes. Los triángulos de puntos equiláteros serán curvilíneos si se transforman los lados.
Saludos.

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4028
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #30138 Antonio Castilla
Lun, 03 Nov 2014, 10:38

.
El que quiera puede aportar, porque ahora ni siquiera tengo Autocad, por un fallo he tenido que desinstalarlo, así que tardaré en contestar.

Antonio Briones
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 30
Registrado: Vie, 29 Oct 2010, 18:27

Inversión para obtener un triángulo equil´tero

Mensaje: #31116 Antonio Briones
Vie, 01 May 2015, 18:15

La solución, como avanzaba Fleitas, hace uso de las circunferencias de Apolonio.
Untitled.pdf
(106.3 KiB) Descargado 87 veces


INVERSIÓN DE CUALQUIER TRIÁNGULO EN UNO EQUILÁTERO.

1. Sea ABC el triángulodado y f su circuncírculo, de centro O.
2. Trazar las tangente a f por A, B y C.
3. Producir las intersecciones S1, S2 y S3 de esas tangentes con las prolongaciones de los lados opuestos.
4. Las intersecciones estarán alineadas (Recta de Lemoine, en azul).
5. Trazar las 3 circunferencias de Apolonio (trazo discontinuo), con centros en S1, S2 y 53 y radios hasta el vértice de que procede cada tangente.
Las 3 circunferencias confluyen en los puntos rojos: P y P'.
6. Con centro en P o en P' (como en el dibujo) y cualquier radio trazar la circunferencia de inversión (roja) de A, B y C, obteniéndose el triángulo equilátero A'B'C' buscado (en rojo).

Imagen

Avatar de Usuario
Antonio Castilla
USUARIO
USUARIO
Mensajes: 4028
Registrado: Mar, 03 Jun 2008, 18:12
Ubicación: Huelva (España)

Mensaje: #31117 Antonio Castilla
Vie, 01 May 2015, 19:25

Off Topic
Hola Antonio.
El problema con las conversiones venía de que tú imagen era enorme.

Una vez que le quité los espacios vacíos de los lados medía 12.670 píxeles. Eso es descomunal, piensa que mi pantalla de 17" tiene unos 1.600 píxeles, eso supone que tu imagen ocupaba casi 8 pantallas puestas en fila.

La he reducido a un tamaño razonable, espero que no se haya perdido ningún detalle en la conversión.

Avatar de Usuario
luisfe
MODERADOR
MODERADOR
Mensajes: 1017
Registrado: Dom, 22 Ene 2012, 17:58

Mensaje: #31125 luisfe
Dom, 03 May 2015, 18:04

Hola.
El año pasado realicé una animación de éste problema pero no llegué a publicarlo en el foro.
La forma que muestro para hallar las circunferencias de Apolonio difiere de la descrita por A.Briones (que es perfecta) , pero creo que no es lo realmente importante en éste ejercicio. Relevante es acordarse de que las
intersecciones de dichas circunferencias son los centros de Inversión buscados. Luego procedemos a dar un
valor cualquiera para r(K) (inversión positiva o negativa).
Por si es de interés, ahí va:


Saludos.

Imágenes alternativas :

Imagen

Imagen

Antonio Briones
CONTRIBUIDOR+++
CONTRIBUIDOR+++
Mensajes: 30
Registrado: Vie, 29 Oct 2010, 18:27

Formatos

Mensaje: #31157 Antonio Briones
Lun, 11 May 2015, 19:46

Antonio Castilla escribió:... El problema con las conversiones venía de que tú imagen era enorme ...


Gracias por la explicación y disculpa. Soy muy mal informático, he de reconocerlo.


  • Temas similares
    Respuestas
    Vistas
    Último mensaje

Volver a “INVERSIÓN”

¿Quién está conectado?

Usuarios navegando por este Foro: No hay usuarios registrados visitando el Foro y 0 invitados